Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Front Microbiol ; 13: 980903, 2022.
Article in English | MEDLINE | ID: covidwho-2022795

ABSTRACT

The current COVID-19 pandemic is motivating us to elucidate the molecular mechanism of SARS-CoV-2 invasion and find methods for decreasing its transmissibility. We found that SARS-CoV-2 could increase the protein level of ACE2 in mice. Folic acid and 5-10-methylenetetrahydrofolate reductase (MTHFR) could promote the methylation of the ACE2 promoter and inhibit ACE2 expression. Folic acid treatment decreased the binding ability of Spike protein, pseudovirus and inactivated authentic SARS-CoV-2 to host cells. Thus, folic acid treatment could decrease SARS-CoV-2 invasion and SARS-CoV-2-neutralizing antibody production in mice. These data suggest that increased intake of folic acid may inhibit ACE2 expression and reduce the transmissibility of SARS-CoV-2. Folic acid could play an important role in SARS-CoV-2 infection prevention and control.

2.
Sens Diagn ; 1(4): 719-730, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1972679

ABSTRACT

Graphene field-effect transistor (GFET) biosensors exhibit high sensitivity due to a large surface-to-volume ratio and the high sensitivity of the Fermi level to the presence of charged biomolecules near the surface. For most reported GFET biosensors, bulky external reference electrodes are used which prevent their full-scale chip integration and contribute to higher costs per test. In this study, GFET arrays with on-chip integrated liquid electrodes were employed for COVID-19 detection and functionalized with either antibody or aptamer to selectively bind the spike proteins of SARS-CoV-2. In the case of the aptamer-functionalized GFET (aptasensor, Apt-GFET), the limit-of-detection (LOD) achieved was about 103 particles per mL for virus-like particles (VLPs) in clinical transport medium, outperforming the Ab-GFET biosensor counterpart. In addition, the aptasensor achieved a LOD of 160 aM for COVID-19 neutralizing antibodies in serum. The sensors were found to be highly selective, fast (sample-to-result within minutes), and stable (low device-to-device signal variation; relative standard deviations below 0.5%). A home-built portable readout electronic unit was employed for simultaneous real-time measurements of 12 GFETs per chip. Our successful demonstration of a portable GFET biosensing platform has high potential for infectious disease detection and other health-care applications.

3.
Sensors & diagnostics ; 1(4):719-730, 2022.
Article in English | EuropePMC | ID: covidwho-1971015

ABSTRACT

Graphene field-effect transistor (GFET) biosensors exhibit high sensitivity due to a large surface-to-volume ratio and the high sensitivity of the Fermi level to the presence of charged biomolecules near the surface. For most reported GFET biosensors, bulky external reference electrodes are used which prevent their full-scale chip integration and contribute to higher costs per test. In this study, GFET arrays with on-chip integrated liquid electrodes were employed for COVID-19 detection and functionalized with either antibody or aptamer to selectively bind the spike proteins of SARS-CoV-2. In the case of the aptamer-functionalized GFET (aptasensor, Apt-GFET), the limit-of-detection (LOD) achieved was about 103 particles per mL for virus-like particles (VLPs) in clinical transport medium, outperforming the Ab-GFET biosensor counterpart. In addition, the aptasensor achieved a LOD of 160 aM for COVID-19 neutralizing antibodies in serum. The sensors were found to be highly selective, fast (sample-to-result within minutes), and stable (low device-to-device signal variation;relative standard deviations below 0.5%). A home-built portable readout electronic unit was employed for simultaneous real-time measurements of 12 GFETs per chip. Our successful demonstration of a portable GFET biosensing platform has high potential for infectious disease detection and other health-care applications. On-chip integrated graphene field-effect transistor (GFET)-based aptasensor was developed with portable readouts for sensitive and specific virus detection.

SELECTION OF CITATIONS
SEARCH DETAIL